DIRECT DETECTION BEYOND THE WIMP PARADIGM

IS THERE NO NEW WEAK-SCALE PHYSICS?

VARIETIES OF SUB-GEV DM

(an illustrative example)

VARIETIES OF SUB-GEV DM

(an illustrative example)

Low-energy effective theory

See e.g. 1108.5383, 1111.0293, 1112.0493, 1203.2531, 1203.4854, 1302.3898

Nuclear scattering transfers very little energy!

Energy available \approx eV (m_{DM}/MeV) Electron scattering can transfer most of energy

Strategy:

Search for DM scattering with electrons

Signal is a single (or a few) ionized electrons

Sensitivity down to MeV scale

"Direct Detection of Sub-GeV Dark Matter" Essig, Mardon & Volansky arXiv:1108.5383

see also Graham, et al 1203.2531

PROOF OF PRINCIPLE: XENON10

XENON10:

- -Incredible sensitivity: could measure single electrons
- -Hardware trigger only recorded single electrons during a 15 kg-day exp. in 2006

0.40

0.35

-Published in 2011

"A search for light dark matter in XENON10 data" 1104.3088

single/fewelectron events $10 < z \le 15 \text{ cm}$

Jeremy Mardon, SITP, Stanford

number of ionized electrons

PROOF OF PRINCIPLE: XENON10

First Direct Detection Limits on sub-GeV DM

Essig, Manalaysay, Mardon, Sorensen & Volansky arXiv: 1206.2644

HOW DOES THIS COMPARE TO MODELS?

Real models already being probed... without even trying

Jeremy Mardon, SITP, Stanford

Essig, Manalaysay, Mardon, Sorensen & Volansky. 1206.2644

THE FUTURE

Backgrounds poorly understood

-study needed!

Dedicated study soon in XENON100 and LUX?

Single-electron sensitivity in Si/Ge detectors?

- lower ionization thresholds
- technology being developed by CDMS

Discrimination of signal/background events?

- -discovery through annual modulation (~10%)?
- -some other clever idea?

CONCLUSION

Direct detection CAN probe DM masses all the way down to the MeV scale!

Technology & understanding of backgrounds is developing fast.

Naturally piggyback on conventional WIMP searches

We can already place direct detection constraints in the MeV-GeV range.

Watch out for XENON100 & LUX analyses soon + CDMS in the next few years

BACK UP SLIDES

PROOF OF PRINCIPLE: XENON10

Extracting limits on 1-, 2-, and 3-electron rates:

(skipping many important details...)

RI < 39

limits: R2 < 4.7 counts per kg-day

R3 < I.I

at 90% CL

DM--electron interaction

(skipping details of calculation...)

limits on DM--electron scattering